
AD-A262 449 FETm PA"E

I. JI,., F .. 2 REP7R7 A 7AT E 3. REPORT TY'E AND* DATES COVERED

January 25 1991 FINAL - 12 1/89-11/30/92
4. TITLE AND SUBTITLE 5 CUNDN( NUMRES

Plastic Deformation of Granular Materials (U)
61102F

6. AUTHOR(S) 2304/A4

Dr. E. Bruce Pitman

7 PERFORMING ORGANIZATION NA .h • 8. PERFORMING ORGANZO.TON

>% The Research Foundation, of. State University REPORT NUMBER
0CLof New York A.S, _7R- 9 , " " .- 4"

U. P.C. Box 9
Albany, New York 12201-0009

S9. SPONSORING MONITORING A,5,,C,' ,qA. ^.-..,No ADORESS(ES) 10 SPONSORING MONITONG"A rjeR N a AGENCY REPORT NUMBER
AFOSR/NM

Building 410, Bolling Air Force Base
Washington, D.C. 20332-6,448 AFOSR-90-0076

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABIL!TY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED UL

13. ABSTRACT (Maximum 2,'0 vcrus)

This project combines analytic and computational investigations
SV ~-to understand the dynamics of elastic-plastic deformation of granular na-

terials, particularly issues related to the formation of shearbands. Roughly
speaking, shearbands form when the governing equations cease to be well-
posed. Our research examines the issue of well-posedness, loss of hyper-

0 bolicity, and regul.vization. This final report summarizes our work on (i)
computation of deformation and formation of shear bands in granular ma-
terial; (ii) analysis of a gradient theory of granular plasticity; (iii) related

ai • elastic and visco-elastic systems of PDE which may lose hyperbolicity.

98 3 81 061!
SUBJECT TERMS 15. NUMBER OF PAGES

granular material; plastic deformation; hyperbolic 12
equations 16. PRICE CODE

17. SECURITY CLASSIFICATION 118. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSI
OF REPORT OF THIS PAGE OF ABSTRACT

lUnclassified lUnclassified I Unclassified I SAR
NSN 7540-01-280-5500 Standard Form 298 fRev 2

PIela.0 by ANSI Sid 13l. d290-102



Computational Deformation and Shearbands We begin by summariz-
ing our work on shearband formation [5]; the second sub-section outlines our
work on adaptative implicit-explicit methods for elastic-plastic deformation
[7].
Shearbands The equations governing the motion of a granular continuum are
the balance laws for mass and momentum. A particularly simple model to
study is the anti-plane shearing of a continuum. If (x, y) denote the in-plane
coordinates, z the direction orthogonal to this plane, and v the velocity in
the z-direction, then the continuity equation is identically satisfied with a
constant density, and the only non-trivial momentum equation is for the
z-direction,

A9v + cý2a.T.. + ce2 
1 TVz = 0. (1.1a)

T is the Cauchy stress tensor, where compressive stresses are taken to be
positive.

We now must augment (1.1a) with suitable constitutive information de-
tailing the evolution of the stresses T., and Ty. To this end, we follow Scha-
effer [10] and adopt a von-Mises type Yield condition with strain-hardening,
and a possibly non-associative flow rule.

ota + [I-H(a,r&)Ra] Vv = 0. (1.1b)

Here, a = (Ti,, T..)* and the * denotes transpose. The rotation Ra gives
the direction of the strain-rate tensor, where

- R cos(a) sin(a)
- sin(a) cos(a)

and a is the angle of non-associativity. Finally, H(o, a) contains the consti-
tutive information related to loading and hardening:

H = < I>
h(n) + I&12 cos(a) jr

where &(x) = maxo<, <t Ia(x, s)l is the maximum previous stress level (and
is an equivalent measure as the total accunmulated shear strain f). A typical d Li

model for the hardening function is h(a) = hov" __N. The elastic compo-
nents are modeled by linear elasticity. The switch < I > is 1 if the material '--
is loading plastically (i.e. if ja(x, t)j = I&(x)I), and 0 otherwise. '•Y.........
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In writing the equations above, we have non-dimensionalized relative to
parameters typical in a biaxial laboratory test. In this setting, the maximum
possible total stress almax = 1 and the elastic wave speed c, - 106. In order
to make the calculations feasible with a reasonable expenditure of computing
resources, we compute with an artificial wavespeed of 1.

It is convenient to examine the one-dimensional system to get a feeling
for the fundamental dynamics of the system. If we assume a, = 0, the
resulting system is hyperbolic whenever I&1 < &,it, where the critical stress
&#,it depends on the degree of non-associativity. In particular, &,it = 1 when
a = 0 (i.e., the system is always hyperbolic when the flow rule is associative)
and ait < 1 when a 0 0. Similar statements hold in the two dimensional
setting.

Roughly speaking, a shearband forms whenever any one component of
stress reaches a maximum and begins to decrease, even if the total stress
(e.g. the squared norm of the stress tensor) is still increasing.

Before equations (1.1) lose hyperbolicity, the system consists of a single
conservation law for momentum balance, and two stress-rate equations which
are not in conservation form. The paper [5] details a Godunov-type scheme
which integrates the governing equations numerically, allowing for loss of
hyperbolicity and the formation of shearbands. The Godunov scheme is
related to ideas in [1, 11]

Our basic scheme consists of four parts: (i) monotone slope determina-
tion; (ii) characteristic tracing; (iii) wave interaction (iv) conservative up-
date of momentum and time-centered stress update. This basic scheme must
be amended wherever hyperbolicity is lost. In that case, a shearband is as-
sumed to form in a cell which experiences change-of-type. This shearband is
treated as an internal boundary; plausible boundary conditions proposed by
Schaeffer [10] are imposed at the boundary and characteristic tracing is used
to update the dependent variables on each side of this boundary. Integration
in the rest of the domain is not affected.

Results of our computations illustrate how the loss of hyperbolicity at
one location promotes unloading nearby, thus localizing deformation into a
shearband. This unloading provides a nonlinear 'regularization', in that loss
of hyperbolicity does not lead to global blow-up of the solution. Rather, a
smooth solution may lose differentiability once the system loses hyperbolicity,
but the strains remain piecewise smooth with jump discontinuities. Further
computational experiments are in progress, allowing for closer examination
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of the phenomenon of unloading.
Implicit-Explicit Computations As mentioned above, the speed of elastic
waves in a granular material are on the order of 106 cm./sec. In compu-
tations, this large wavespeed imposes a stringent constraint on the allowable
timestep for an explicit calculation, a timestep too small for a fully explicit
numerical simulation of an experimental biaxial test. To overcome this sta-
bility constraint, we are developing an Adaptatively Implicit-Explicit (ALE)
Godunov method for wave propagation [7]. The motivating feature is this
work is that most elastic waves are weak and do not contribute substantially

j to the dynamics. The most important waves are (1) waves of stroa.g plastic
response, and (2) unloading waves from the shearband.

Piviously, Fryxell et. al. [4] developed an implicit Godunov method for
gas :. namics; this method is fully second-order in time, using a trapezoidal
rule integration in time. The price paid for second-order accuracy is that the
linear algebra system to be solved at each gridpoint consists of 2N equations,
where N is the number of conservation equations to be solved. Further,
the desire for monotonicity limits the timestep to approximately twice the
explicit timestep. This timestep limit is still too small for our elastic-plastic
problem, and the role of plasticity in our system requires new ideas.

Following ideas of P. Colella and J. Trangenstein, we have begun a pro-
gram to develop the AIE method for elastic-plastic deformation. The idea
is to switch smoothly between explicit and implicit time-integration for each
wave, independent of other waves. For waves which are computed explic-
itly, the -method proceeds as above; for waves which are computed implicitly,
we reduce to first-order accuracy in time (currently using backwards Euler)
and space (no characteristic tracing). We use the Godunov methodology of
averaging (in space) the solution of Riemann problems to ensure good disper-
sion characteristics. While the backward Euler time integration may dampen
some waves which should not decay, this integrator does give a monotone (in
time) solution. Further, the linear algebra problem consists of N equations
at each gridpoint.

To date, we have written an AIE code for solving the elastic-plastic model
of Antman [1]. This model consists of 2 conservation laws (in 1 space dimen-
sion), plus a single ODE for the accumulated shear. The fundamental sim-
plification of this model is that the system is always strictly hyperbolic. We
have made comparisons with Trangenstein's analytic solution to the Riemann
problem for this model, and with his explicit Godunov calculations. While
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our current version works well for relatively weak-wave solutions and small
multiples of the explicit timestep (order 5), performance for strong-wave so-
lutions and v,, large timesteps is less satisfactory. We are currently working
on an iteration scheme to overcome these limitations. (Note: Trangenstein's
explicit computations also degraded for strong-wave solutions, and he mod-
ified the wave tracing part of the algorithm to obtaih. better performance.
We are examining how his modifications may be adapted into our method.)

Our primary goal in developing AIE is to to solve the anti-plane shear
model. We are studying the modifications necessary to adapt our current
code for this problem. The most vexing difficulty is how to accurately (i.e.
explicitly) capture unloading waves near the shearband while treating other
elastic waves implicitly. Our current strategy is to use ATE for the initial
loading of the sample, until the maximum stress is large (say Jalz 0.75arit),
and then switch to fully a explicit integration, to capture shearbands and
unloading waves accurately.

Gradient Theory Significant work is required to understand Lhe true nature
of the shear band before physically "correct" jump conditions can be applied.
Schaeffer's suggestion in [101 is to apply the same constitutive relations to
the rapidly shearing material inside the band but include a new (phenomeno-
logical) lengthscale i.e. the band thickness. An alternative approach is to
identify the the most important dissipative processes, which provide a high
frequency cutoff to the strain-rate blow-up. Then it may be possible to de-
rive jump conditions in the limit as the strength of these dissipative processes
approaches zero.

We have studied continuum theories which provide a dissipation mecha-
nism, with the intention of (i) examining well-posedness of these models, and
(ii) deriving jump conditions. To this end, we began with a Cosserat model as
a possible regularization method. The couple-stresses in the Cosserat con-
tinuum do provide a high-frequency cutoff and regularization for shearing
motions. But the model fails to provide regularization for dilation.

Therefore we have examined higher-order gradient theories as a potential
model (see [12]). This theory consists of mass and momentum balance, plus
constitutive equations which can be written as

IdevTI = p('y, A-1) (2a)
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devT

devV(P) = A IdevT- (2b)

trY(P)= •Q, ) . (2c)

These equations express the yield condition, flow rule, and dilatancy, depend-
ing on the accumulated shear, -y, and the Laplacian A-y. The accumulated
shear evolves according to Ot-y = devV(P)j. V is the strain rate,

V1, = Pi(OVt + 49jVi)

and V(P) denotes the plastic part of the strain-rate. Also, trV denotes the
"trace of V, trV = Vi, and the deviator devV = V - (trV)I where I is
the identity matrix. The resulting system of equations differs from a more
conventional Flow Theory of plasticity in that a PDE for y must be solved.

The analysis of simple shear i3 completed, and analysis of general flow
is partially completed [8]. In the case of simple shear with a velocity u
depending on the single space variable y, the governing equations may be
written

8,u a 1 = o

at 1--8u -0

Linearizing, looking for exponential solutions eiyf+A(4)t and solving the re-
sulting eigenvalue problem, we find A = :k2M/12 - p1, where yj and Y2

are the partial derivitives of u with respect to its first and second argu-
ments. In classical Flow Theory of plasticity, a, is positive until a critical
value of the accumulated shear is reached and then becomes negative; this
non-monotonicity is the source of ill-poý,edness and shearband formation. If
p,2 < 0, the incorporation of the higher order gradient regularizes the equa-
tions and leads to a well-posed system. However the system may be unstable
for a range of wavenumbers C, and concentrate deformation in a narrow re-
gion.

Further analysis of the simple shear problem also shows that the system
exhibits shearband-like solutions, similar to those found in [2].
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After completing the calculation showing well-posedness, we plan to ex-
amine whether this theory can be used in an anti-plane shearing problem, as
a means of deriving jump conditions.

Related Systems We have studied two issues related to the well-posedness
of elastic-plastic deformation problems. The first issue concerns constitutive

-- - relations with rotational symmetry; the second, a relaxation phenomenon.
Rotational Symmetry The issue of isotropy within hyperelastic-plastic models
in multiple dimensions is important. In particula , if the stresses are assumed
to be rotationally invariant, then the governir.g equations are not strictly
hyperbolic. The origin in state space is an umbilic point. Existence of an
umbilic point becomes a serious issue when motions which include the origin
are permitted. In particular, the usual high order techniques for solving
hyperbolic conservation laws fail for such motions. With H. Freistuhler we
are examining this issue [3].

For rotationally invariant materials, the stress is usually taken to be a
function of the strain of the form

T(U) = (JU12 )[.

We examined a model of this kind, numerically solving the Riemann problem
for the 2 x 2 system

atU + 6,,(IUI2U) = 0 (3)

where U = (u, v). (Remark: There is a precise isomorphism between the
wave patterns of (3) and (a specific) part of the wave pattern of any generic
rotationally degenerate system of hyperbolic conservation laws, including
"isotropic, neo-Hookian elasticity.) It is unclear what additional effects plastic
yielding will have on the computational solution.

Equation (3) is hyperbolic, with eigenvalues A JU = 1U2 and A - 31U12,
and right eigenvectors r. = (-v,u) and r, = (u, v). Note: the slow
azimuthal field is linearly degenerate in the sense of Lax, while the fast radial
field is nonlinear away from the origin.

We solved the Riemann problem for (3) using two different types of nu-
merical method, viz. a random choice scheme, and a Godunov scheme. The
random choice method is only first order accurate in space and time, but
introduces no artificial dissipation into the calculation. In contrast, the Go-
"dunov scheme we implemented is second order accurate, but incorporates
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a selective amount of diffusion into the different wave families. This diffu-
sion corrupts the solution for special Riemann data. Let us explain this last
statement.

For Riemann data U1 and U,. which is colinear and lie on opposite sides of
the origin, there are two possible constructions of a solution. For a specific
example, let us consider

Ut = (ulV) = (1,0) U, = (u,.,v,i) = (-1,0)

One may construct a solution which follows the azimuthal field around from
(1,0) to (-1,0), establishing a contact discontinuity. Also, one could consider
the reduced system

"Otu *',- au 3  v = 0

The solution of this reduced system follows the construction of Wendroff and
Liu, and u undergoes a composite shock-rarefaction.

"These different constructs point to a non-uniqueness in the solution oper-
ator for (3). In particular, we have demonstrated in [3] that, for nearly colin-
ear Riemann data, the Godunov scheme approximately mimics the reduced-
system construction, while the random choice scheme (by design) mimics the
centered wave construction.

We believe this result illustrated the difficulties to be overcome in the
numerical simulation of hyperelastic material models. This project is contin-
uing, as Freistuhler and I study other numerical algorithms for rotationally
invariant systems, in particular, questions of convergence for the Cauchy

Sproblem.
Viscoelastic Relaxation Work is in progress studying relaxation mechanisms.
Consider the system

atu - 19.v = 0 (4a)

Oev - &P =0 (4b)

If we provide constitutive information P = P(u, v), the system is closed and
is used as a model of deformation of an elastic bar. With P = Prf = u3/3-u,
the system is hyperbolic whenever lul > 1 and elliptic otherwise. This model
is used to study change-of-phase in elastic materials. To prove existence
of solutions, Eq. 4a-4b must be augmented with an admissibility criterion
describing the types of discontinuities allowed in the solution. A result of
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Shearer shows non-uniqueness of the solution for certain initial data. That
is, different solutions emerge for initial data in a special region in the (u, v)-
plane. One solution consists of two rarefaction waves coupled with i.wo phase
jumps, and is obtained in the limit when a viscosity or viscrsity-capillarity
regularization is used.

We are examining a different kind of regularization. Assume P is de-
scribed by its own evolution equation, given by a viscoelastic relaxationcon-
stituitive model, and augment Eq. 4a and 4b with

OtP + E 2 9tu - -(P - Pr,1 ) (4c)

where r is a relaxation time. In what sense do solutions of the relaxation
system Eq. 4a-c convwrge, as -r --- 0, to solutions of the p-system Eq. 4a-4b,
with P = Pef? As part of his Ph D. thesis, Mr. Yigong Ni is studying this
problem numerically [9], and he has partial analytic results on convergence
as r --+ 0. One particular numerical finding is that the relaxation limit
solution is not the same as the viscous regularization solution. The analysis
gives a partial answer to the question of convergence for smooth solutions,
and also provides asymptotic behavior near discontinuities. These result
will be important in our granular flow work, when considering viscoplastic
constitutive relations (i.e. relaxation systems such as Eq. 4, with plasticity
included).
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